Category: Tak Berkategori


selain diskusi,, itulah kegiatan yang kami lakukan untuk bersenang2….

Bendungan adalah salaha satu tempat kita makan-makan apabila hari libur, yang ramai dikunjungi yaitu pada saat lebaran idul adha dan idul fitri, bendungan ini terletak di pemukiman transmigrasi kobe kulo sp 3…..  untuk mencapainya bisa menggunakan mobil dan motor darat, waktunya kira-kira 1 jam dari lelilef…… pemandangannya lumayan bagus,, bukan hanya orang dari lelilef saja saja yang pergi berlibur di tempat itu, melainkan dari weda dan dari desa-desa yang lain.

p

pemandangan di atas diambil di desa Lelilef kecamatan weda Tengah kabupaten halmahera tengah pada wakru pagi dan sore….

itulah pemandangan yang ada di desa lelilef pada waktu sore dan pegi….

selain sunset dan sunrise nya, juga karena lelilef memiliki pemandangan yang sangat indah….. sehingga membuat suasana menjadi tenang dan aman…

klo anda berminat ingin menikmati pemandangan tersebut, mampirlah ke desa lelilef,,, karena bukan hanya pemandangan itu saja, tapi masih ada lagi pemandangan yang lebuh indah…..

 

di tunggu ya kedatangannya…

 

poenya koe

sake west

Batuan induk bijih nikel adalah batuan peridotit. Menurut Vinogradov batuan ultra basa rata-rata mempunyai kandungan nikel sebesar 0,2 %. Unsur nikel tersebut terdapat dalam kisi-kisi kristal mineral olivin dan piroksin, sebagai hasil substitusi terhadap atom Fe dan Mg. Proses terjadinya substitusi antara Ni, Fe dan Mg dapat diterangkan karena radius ion dan muatan ion yang hampir bersamaan di antara unsur-unsur tersebut. Proses serpentinisasi yang terjadi pada batuan peridotit akibat pengaruh larutan hydrothermal, akan merubah batuan peridotit menjadi batuan serpentinit atau batuan serpentinit peroditit. Sedangkan proses kimia dan fisika dari udara, air serta pergantian panas dingin yang bekerja kontinu, menyebabkan disintegrasi dan dekomposisi pada batuan induk.

Pada pelapukan kimia khususnya, air tanah yang kaya akan CO2 berasal dari udara dan pembusukan tumbuh-tumbuhan menguraikan mineral-mineral yang tidak stabil (olivin dan piroksin) pada batuan ultra basa, menghasilkan Mg, Fe, Ni yang larut; Si cenderung membentuk koloid dari partikel-partikel silika yang sangat halus. Didalam larutan, Fe teroksidasi dan mengendap sebagai ferri-hydroksida, akhirnya membentuk mineral-mineral seperti geothit, limonit, dan haematit dekat permukaan. Bersama mineral-mineral ini selalu ikut serta unsur cobalt dalam jumlah kecil.

Larutan yang mengandung Mg, Ni, dan Si terus menerus kebawah selama larutannya bersifat asam, hingga pada suatu kondisi dimana suasana cukup netral akibat adanya kontak dengan tanah dan batuan, maka ada kecenderungan untuk membentuk endapan hydrosilikat. Nikel yang terkandung dalam rantai silikat atau hydrosilikat dengan komposisi yang mungkin bervariasi tersebut akan mengendap pada celah-celah atau rekahan-rekahan yang dikenal dengan urat-urat garnierit dan krisopras. Sedangkan larutan residunya akan membentuk suatu senyawa yang disebut saprolit yang berwarna coklat kuning kemerahan. Unsur-unsur lainnya seperti Ca dan Mg yang terlarut sebagai bikarbonat akan terbawa kebawah sampai batas pelapukan dan akan diendapkan sebagai dolomit, magnesit yang biasa mengisi celah-celah atau rekahan-rekahan pada batuan induk. Dilapangan urat-urat ini dikenal sebagai batas petunjuk antara zona pelapukan dengan zona batuan segar yang disebut dengan akar pelapukan (root of weathering).

Faktor-faktor yang mempengaruhi pembentukan bijih nikel laterit ini adalah:

a. Batuan asal. Adanya batuan asal merupakan syarat utama untuk terbentuknya endapan nikel laterit, macam batuan asalnya adalah batuan ultra basa. Dalam hal ini pada batuan ultra basa tersebut: – terdapat elemen Ni yang paling banyak diantara batuan lainnya – mempunyai mineral-mineral yang paling mudah lapuk atau tidak stabil, seperti olivin dan piroksin – mempunyai komponen-komponen yang mudah larut dan memberikan lingkungan pengendapan yang baik untuk nikel.

b. Iklim. Adanya pergantian musim kemarau dan musim penghujan dimana terjadi kenaikan dan penurunan permukaan air tanah juga dapat menyebabkan terjadinya proses pemisahan dan akumulasi unsur-unsur. Perbedaan temperatur yang cukup besar akan membantu terjadinya pelapukan mekanis, dimana akan terjadi rekahan-rekahan dalam batuan yang akan mempermudah proses atau reaksi kimia pada batuan.

c. Reagen-reagen kimia dan vegetasi. Yang dimaksud dengan reagen-reagen kimia adalah unsur-unsur dan senyawa-senyawa yang membantu mempercepat proses pelapukan. Air tanah yang mengandung CO2 memegang peranan penting didalam proses pelapukan kimia. Asam-asam humus menyebabkan dekomposisi batuan dan dapat merubah pH larutan. Asam-asam humus ini erat kaitannya dengan vegetasi daerah. Dalam hal ini, vegetasi akan mengakibatkan: • penetrasi air dapat lebih dalam dan lebih mudah dengan mengikuti jalur akar pohon-pohonan • akumulasi air hujan akan lebih banyak • humus akan lebih tebal Keadaan ini merupakan suatu petunjuk, dimana hutannya lebat pada lingkungan yang baik akan terdapat endapan nikel yang lebih tebal dengan kadar yang lebih tinggi. Selain itu, vegetasi dapat berfungsi untuk menjaga hasil pelapukan terhadap erosi mekanis.

d. Struktur. Struktur yang sangat dominan yang terdapat didaerah Polamaa ini adalah struktur kekar (joint) dibandingkan terhadap struktur patahannya. Seperti diketahui, batuan beku mempunyai porositas dan permeabilitas yang kecil sekali sehingga penetrasi air sangat sulit, maka dengan adanya rekahan-rekahan tersebut akan lebih memudahkan masuknya air dan berarti proses pelapukan akan lebih intensif.

e. Topografi. Keadaan topografi setempat akan sangat mempengaruhi sirkulasi air beserta reagen-reagen lain. Untuk daerah yang landai, maka air akan bergerak perlahan-lahan sehingga akan mempunyai kesempatan untuk mengadakan penetrasi lebih dalam melalui rekahan-rekahan atau pori-pori batuan. Akumulasi andapan umumnya terdapat pada daerah-daerah yang landai sampai kemiringan sedang, hal ini menerangkan bahwa ketebalan pelapukan mengikuti bentuk topografi. Pada daerah yang curam, secara teoritis, jumlah air yang meluncur (run off) lebih banyak daripada air yang meresap ini dapat menyebabkan pelapukan kurang intensif.

f. Waktu. Waktu yang cukup lama akan mengakibatkan pelapukan yang cukup intensif karena akumulasi unsur nikel cukup tinggi.

Profil nikel laterit keseluruhan terdiri dari 4 zona gradasi sebagai berikut :

1. Iron Capping : Merupakan bagian yang paling atas dari suatu penampang laterit. Komposisinya adalah akar tumbuhan, humus, oksida besi dan sisa-sisa organik lainnya. Warna khas adalah coklat tua kehitaman dan bersifat gembur. Kadar nikelnya sangat rendah sehingga tidak diambil dalam penambangan.

Ketebalan lapisan tanah penutup rata-rata 0,3 s/d 6 m. berwarna merah tua, merupakan kumpulan massa goethite dan limonite. Iron capping mempunyai kadar besi yang tinggi tapi kadar nikel yang rendah. Terkadang terdapat mineral-mineral hematite, chromiferous.

2. Limonite Layer : Merupakan hasil pelapukan lanjut dari batuan beku ultrabasa. Komposisinya meliputi oksida besi yang dominan, goethit, dan magnetit. Ketebalan lapisan ini rata-rata 8-15 m. Dalam limonit dapat dijumpai adanya akar tumbuhan, meskipun dalam persentase yang sangat kecil. Kemunculan bongkah-bongkah batuan beku ultrabasa pada zona ini tidak dominan atau hampir tidak ada, umumnya mineral-mineral di batuan beku basa-ultrabasa telah terubah menjadi serpentin akibat hasil dari pelapukan yang belum tuntas. fine grained, merah coklat atau kuning, lapisan kaya besi dari limonit soil menyelimuti seluruh area. Lapisan ini tipis pada daerah yang terjal, dan sempat hilang karena erosi. Sebagian dari nikel pada zona ini hadir di dalam mineral manganese oxide, lithiophorite. Terkadang terdapat mineral talc, tremolite, chromiferous, quartz, gibsite, maghemite.

3. Silika Boxwork : putih – orange chert, quartz, mengisi sepanjang fractured dan sebagian menggantikan zona terluar dari unserpentine fragmen peridotite, sebagian mengawetkan struktur dan tekstur dari batuan asal. Terkadang terdapat mineral opal, magnesite. Akumulasi dari garnierite-pimelite di dalam boxwork mungkin berasal dari nikel ore yang kaya silika. Zona boxwork jarang terdapat pada bedrock yang serpentinized.

4. Saprolite : Zona ini merupakan zona pengayaan unsur Ni. Komposisinya berupa oksida besi, serpentin sekitar <0,4% kuarsa magnetit dan tekstur batuan asal yang masih terlihat. Ketebalan lapisan ini berkisar 5-18 m. Kemunculan bongkah-bongkah sangat sering dan pada rekahan-rekahan batuan asal dijumpai magnesit, serpentin, krisopras dan garnierit. Bongkah batuan asal yang muncul pada umumnya memiliki kadar SiO2 dan MgO yang tinggi serta Ni dan Fe yang rendah. campuran dari sisa-sisa batuan, butiran halus limonite, saprolitic rims, vein dari endapan garnierite, nickeliferous quartz, mangan dan pada beberapa kasus terdapat silika boxwork, bentukan dari suatu zona transisi dari limonite ke bedrock. Terkadang terdapat mineral quartz yang mengisi rekahan, mineral-mineral primer yang terlapukkan, chlorite. Garnierite di lapangan biasanya diidentifikasi sebagai kolloidal talc dengan lebih atau kurang nickeliferous serpentin. Struktur dan tekstur batuan asal masih terlihat.

5. Bedrock : bagian terbawah dari profil laterit. Tersusun atas bongkah yang lebih besar dari 75 cm dan blok peridotit (batuan dasar) dan secara umum sudah tidak mengandung mineral ekonomis (kadar logam sudah mendekati atau sama dengan batuan dasar). Batuan dasar merupakan batuan asal dari nikel laterit yang umumnya merupakan batuan beku ultrabasa yaitu harzburgit dan dunit yang pada rekahannya telah terisi oleh oksida besi 5-10%, garnierit minor dan silika > 35%.

Permeabilitas batuan dasar meningkat sebanding dengan intensitas serpentinisasi.Zona ini terfrakturisasi kuat, kadang membuka, terisi oleh mineral garnierite dan silika. Frakturisasi ini diperkirakan menjadi penyebab adanya root zone yaitu zona high grade Ni, akan tetapi posisinya tersembunyi.

 

 

 

 

 

Universita Muhammadiyah Maluku Utara adalah perguruan tinggi yang terletak di selatan kota Ternate, Tepatnya di kelurahan Sasa, kampus ini memang cukup terknal di Indonesia, kampus yang didalamnya kurang lebih 8 fakultas, yaitu : Fakultas Teknik, Sospol, Kesehatan Masyarakat, Pertanian, Ekonomi, Mipa, dan Fakultas Hukum, serta PGSD S1, yang didlamnya terdapat berbagai jurusan, salah satunya yaitu jurusan Teknik pertambangan,, Tidak bisa di pungkiri kalau Teknik pertambangan adalah salah satu juran yang ikut membesarkan nama UMMU di kalangan masyarakat dan di perusahan pertambangan,,

Namun saya sebagai mahasiswa yang kuliah di UMMU Ternate, agak sedikit kecewa dengan sistem yang ada di birokrasi kampus. bagaimana tidak kecewa, banyak kreatifitas mahasiswa dipangkas habis-habisan,….

apa yang kami lakukan selalu salaha di mata pimpinan-pimpinan yang ada kampus,, contohnya Kegiatan materikulasi yang di lakukan oleh Fakultas Teknik,,kegiatan ini awalanya tidak bisa di laksanakan,, kami tidak tau apa alasannya,,…!!!!!!  padahal kegiatan ini sangat bermanfaat bagi mahasiswa baru Khususnya Fakultas Teknik….

satu lagi yang membuat saya kecewa….. yaitu..>>>  :::

kampus mengangkat sekuriti atau keamanan kampus dari orang yang pernah memukul mahasiswa….dan membuat onar di kampus,,, ini kan aneh….!! mendingan ambil saja preman yang ada di leger-leger dan di terminal.. yang ada di kota ternate…..,, saya tidak tahu apa maksud dari hal tersebut……?

pesan dari saya….:

sejahat apapun, sebanyak apapun dan sebesar apapun sekurity yang ada di kampus, kami akan tetap melawan yang namanya penindasan dan ketidak adilan…….

salam FATEK

 

SEINDAH MAWAR BEDURI

” SEINDAH MAWAR BERDURI ”

_ KAULAH MAWAR IDAMAN _

_ TUMBUHMU DI TAMAN _

_ LARANGAN MEKARMU DIPAGARI DAN DIBAJAI _

_ KETAKWAAN SUCINYA HATIMU SEINDAH AKHLAK MU _

_ DICIPTAKAN SEBAGAI WANITA _

_ MEWARIS KELEMBUTAN _

” WANITA SHOLEHA “

tugas geologi fisik

AKTIVITAS MAGMA

 

 

Indonesia merupakan salah satu negara dengan jumlah gunung apinya yang terbesar di dunia. Kira-kira 179 gunung api yang terdapat di negeri ini dan 129 diantaranya masih aktif sampai sekarang. Karena hal inilah maka hampir setiap tahun paling sedikit satu gunung api melakukan erupsinya.

Aktivitas gunung merupakan pencerminan dari aktivitas magma yang terdapat di dalam bumi.

 

Aktivitas Volkanik

 

Aktivitas volkanik pada umumnya digambarkan sebagai proses yang menghasilkan gambaran yang menakjubkan, atau kadang menakutkan dari suatu bentuk struktur kerucut yang secara periodik melakukan erupsinya. Erupsi dari gunung api ini kadang –kadang merupakan letusan yang sangat gebat (eksplosif), tetapi kadang-kadang berlangsung dengan tenang. Faktor utama yang mengontrol macam erupsi gunung api adalah komposisi magma, temperatur magma dan kandungan gas yang terdapat dalam magma. Faktor-faktor tersebut sangat mempengaruhi mobilitas dari magma , atau sering disebut viskositas (kekentalan) magma. Semakin kental magma, semakin sulit magma untuk mengalir.

Komposisi kimia magma telah diuraikan pada bab sebelumnya dengan klasifikasi batuan beku. Satu faktor utama yang membedakan antara bermacam-macam batuan beku dan juga antara macam magma asala ialah kandungan unsur silika (SiO2). Magma pembentuk batuan beku basaltik mengandung kira-kira 50% silika. Batuan beku granitik mengandung sekitar 70% silika, sedang batuan beku menengah mengandung sekitar 60% silika. Jadi dapat dikatakan bahwa viskositas magma sangat berhubungan dengan kandungan silikanya. Semakin tinggi kandungan silikanya, maka magma semakin viskos dan aliran magma akan semakin lambat. Hal ini disebabkan karena molekul-molekul silika terangkai dalam bnetuk rantai yang panjang, walaupun belum mengalami kristalisasi. Akibatnya, karena lava basaltik mengandung silika yang rendah, maka lava basaltik cenderung bersifat encer dan mudah mengalir, sedangkan lava granitik relatif sangat kental dan sulit mengalir walaupun pada temperatur tinggi.

 

Tabel. Bermacam-macam sifat magma karena perbedaan komposisi.

 

Sifat Magma Basaltik Andesitik Granitik
Kandungan silika Kecil (+50%) Menengah (+60%) Tinggi (+70%)
Viskositas Rendah Menengah Tinggi
Kecenderungan Membentuk Lava Tinggi Menengah Rendah
Kecenderungan Membentuk Piroklastik Rendah Menengah Tinggi
Titik Lebur Tinggi Menengah Rendah

 

Kandungan gas dalam magma juga akan berpengaruh terhadap mobilitas dari magma. Keluarnya gas dari magma menyebabkan magma menjadi semakin kental. Keluarnya gas ini dapat pula menyebabkan tekanan yang cukup kuat untuk keluarnya magma melalui lubang kepundan. Pada waktu magma bergerak naik ke atas mendekati permukaan pada gunung api, tekanan pada bagian magma yang paling atas akan berkurang. Berkurangnya tekanan akan mengakibatkan lepasnya gas dari magma dengan cepat. Pada temperatur tinggi dan tekanan yang rendah, memungkinkan gas untuk mengembangkan volumenya sampai beberapa kali dari volumenya mula-mula. Magma basaltik yang kandungan gasnya cukup besar, memungkinkan gas tersebut untuk keluar melalui lubang kepundan gunung api dengan relatif mudah. Keluarnya gas tersebut dapat membawa lava yang disemburkan sampai bermeter-meter tingginya. Sedangkan pada magma yang kental, keluarnya gas tidak mudah, tetapi gas tersebut akan berkumpul pada kantong-kantong dalam magma yang menyebabkan tekanan meningkat besar sekali. Tekanan yang besar ini akan dikeluarkan dengan letusan yang hebat dengan membawa material yang setengah padat dan padat melalui lobang kawah gunung api. Jadi besarnya gas yang keluar dari magma akan sangat mempengaruhi sifat erupsi gunung api.

 


Material Erupsi Gunung Api

 

Material yang dikeluarkan oleh gunung api pada waktu erupsi bisa berupa lava, gas ataupun material piroklastik. Tiap gunung api mempunyai karakteristik tersendiri mengenai material yang dikeluarkan selama erupsinya.

Aliran Lava

Pada umumnya aliran lava terjadi pada lava bsaltik yang bersifat cair karena kandungan silikanya relatif kecil. Lava basaltik akan mengalir dengan mudah pada daerah yang luas atau kadang-kadang menyerupai bentuk lidah. Adakalanya aliran lava basaltik bisa mencapai puluhan kilimeter dengan kecepatan aliran antara 10 sampai 300 meter per jam. Sebaliknya aliran lava yang kaya silika sangat lambat sekali.

Aliran lava basaltik, kadang-kadang menghasilkan permukaan yang halus, tetapi juga kadang-kadang menghasilkan permukaan yang berkerut seperti bentuk tali. Bentuk lava yang demikian disebut dengan pahoehoe lava atau ropy lava. Bentuk lain yang juga umum terjadi adalah permukaan yang kasar, berbentuk blok-blok dengan tepi yang tajam, disebut dengan blok lava atau aa lava. Aliran dari aa  lava biasanya tebal dan dingin, dengan kecepatan aliran sekitar 5 sampai 50 meter per jam. Blok lava ini terjadikarena bagian luar lava yang relatif cepat membeku, tetapi di bagian dalamnya relatif masih cair dan terus mengalir. Akibat aliran lava di bagian dalam ini akan menyebabkan bagian luar yang sudah membeku terpengaruh oleh aliran ini sehingga mengalami retakan dan membentuk blok-blok. Selain pada permukaannya juga terbentuk lubang-lubang bekas keluarnya gas.

Gas

Magma mengandung bermacam gas yang jumlahnya kira-kira 1 sampai 5% dari berat total, dan sebagian besar merupakan uap air.meskipun persentasenya kecil, tetapi jumlah gas yang dikeluarkan bisa mencapai ribuan ton per hari. Komposisi gas yang dikeluarkan dalam aktivitas gunung api mengandung 70% uap air, 15% karbon diosida, 5% nitrogen, 5% sulfur dan sisanya terdiri dari klorida, hidrogen dan argon.

Material Piroklastik

Material padat dan setengah padat yang dikeluarkan oleh gunung api pada waktu erupsinya disebut material piroklastik. Material fragmental ini mempunyai ukuran dari sangat halus sampai diameter beberapa meter. Sebagian besar material yang dikeluarkan ini diendapkan disekitar kawah, sehingga membentuk struktur kerucut gunung api.

Karena material piroklastik mempunyai ukuran fragmen yang sangat bervariasi, maka material piroklastik dapat dikelompokkan berdasarkan ukurannya. Partikel-partikel yang berukuran sangat halus disebut debu vulkanik (volcanic ash). Material ini terbentuk bila lava banyak mengandung banyak gas di dalamnya. Bila gas yang panas ini dieksplosifkan keluar, maka lava akan terurai menjadi partikel-partikel yang halus. Hal semacam ini bila dikeluarkan dalam ukuran yang relatif besar akan membentuk pumis. Bila debu volkanik yang panas ini jatuh di permukaan bumi, akan membentuk welded tuff, yang dicirikan adanya glass shard.

Partikel yang berukuran seperti kacang disebut lapilli, sedang partikel atau material piroklastik yang berukuran lebih besar dari lapilli disebut block bila dikeluarkan dari gunung api dalam keadaan padat, sehingga bentuknya meruncing. Sedang bila dikeluarkan dalam keadaan setengah padat sehingga bentuknya relatif membundar disebut bomb.

 

Gunung Api dan Erupsi Gunung Api

 

Erupsi gunung api yang berkelanjutan, akan menghasilkan material-material yang terkumpul di sekitar pusat erupsinya dan membentuk gunung api (volkano). Pusat erupsi gunung api yang biasanya terletak pada puncaknya disebut crater (kawaH0, berhubungan dengan dapur magma melalui semacam pipa. Beberapa gunung api mempunyai kawah yang sangat besar sampai beberapa kilometer diameternya yang disebut kaldera. Tidak semua gunung api mengeluarkan hasil erupsinya melalui lubang yang terpusat, tetapi kadang-kadang melalui suatu celah yang memanjang pada lerang gunung api tersebut. Aktivitas magma pada lereng gunung api membentik parasitik cone.

Setiap gunung api mempunyai sifat dan tipe erupsi yang berbeda-beda, sehingga masing-masing mempunyai bentuk yang berbeda pula. Berdasarkan sifat dan tipenya, maka gunung api dapat dibedakan menjadi tiga yaitu gunung api shield, cinder cone dan composit cone.

Kaldera diperkirakan terbentuk pada waktu terjadi erupsi yang sangat besar, sehingga dapur magma kosong. Kemudian karena kosongnya dapur magma, puncak gunung api tersebut runtuh ke dalam dapur magma sehingga membentuk lubang kawah yang sangat besar.

Erupsi celah (Fissure Erupsions)

Aktivitas erupsi gunung api melalui celah yang memanjang disebut fissure. Erupsi yang demikian akan menyebabkan penyebaran material volkanik sangat luas. Apabila material yang dikeluarkan merupakan lava basalt yang encer, akan membentuk flood basalt, yang dapat mengalir sampai berkilometer jauhnya.

Apabila lava yang dikeluarkan banyak mengandung silika, maka akan menghasilkan aliran piroklastik (pyroclastic flows) yang terdiri dari debu volkanik dan pumis.

 

Aktivitas Magma Dalam Bumi

 

Seperti telah diketahui dan dipercaya oleh sebagian besar orang, bahwa sebagian besar magma berada pada tempat yang sangat dalam. Mempelajari aktivitas magma di dalam bumi merupakan hal yang penting bagi ahli geologi seperti mempelajari aktivitas gunung api. Ada beberapa tipe dari bentuk tubuh batuan beku instrusif yang terbentuk pada waktu magma mengkristal di dalam bumi. Bentuk-bentuk tubuh tersebut ada yang tabular, dan ada pula yang masif. Selain itu sebagian tubuh batuan beku tersebut ada yang memotong perlapisan batuan sedimen dan ada pula yang menerobos diantara perlapisan batuan sedimen. Mengacu pada perbedaan-perbedaan tersebut, maka tubuh batuan beku dalam dapat digolongkan berdasarkan bentuknya apakah tabular atau masif, dan orientasinya terhadap batuan disekitarnya. Batuan beku dalam yang memotong batuan sedimen disebut diskordan, sedang yang sejajar dengan perlapisan batuan sedimen disebut konkordan.

Batuan beku intrusif mempunyai variasi ukuran dan bentuk yang sangat besar. Dike adalah batuan beku diskordan yang dibentuk oleh magma yang menerobos melalui retakan yang memotong perlapisan batuan sedimen. Tubuh batuan yang berbentuk tabular ini mempunyai ketebalan dari beberapa sentimeter sampai lebih dari satu kilometer, dengan panjanh dapat sampai beberapa kilometer. Umumnya dike lebih resisten terhadap proses pelapukan daripada batuan disekitarnya.

Sill adalah batuan beku yang tabular yang berbentuk ketika magma menerobos melalui bidang perlapisan batuan sedimen. Pada umumnya batuan beku sill mendatar, tetapi sebenarnya kedudukan sill sangat tergantung pada kedudukan perlapisan batuan sedimen disekitarnya. Dari ketebalannya yang seragam dan penyebarannya yang luas, maka sill dipercaya bahwa terbentuk dari magma yang sangat encer. Jadi pada umumnya sill disusun oleh magma basaltik. Selain itu sill pada umumnya terbentuk pada tempat yang relatif dangkal dimana tekanan yang dibentuk oleh batuan sedimen yang diterobosnya relatif kecil.

Lakolit merupakan batuan beku konkordan seperti  sill yang terbentuk pada lingkungan dekat permukaan. Tetapi magma yang membentuk lakolit lebih kental. Tubuh lakolit terbentuk seperti lensa cembung ke atas. Lakolit pada umunya merupakan inti dari struktur kubah yang akan tersingkap apabila batuan sedimen yang menutupi diatasnya tererosi.

Batolit merupakan tubuh batuan beku diskordan yang sangat besar, dengan diameter lebih dari 40.000 km2. Batuan yang menyusun batolit biasanya mempunyai komposisi mineral yang mendekati tipe granitik. Batolit yang besar merupakan hasil dari kejadian yang berlangsung sangat lama lebih dari jutaan tahun, tetapi tubuh batolit yang relatif kecil umumnya disusun oleh satu tipe batuan beku. Batolit biasanya merupakan inti dari suatu sistem pegunungan. Atap batolit bentuknya tidak teratur. Bagian atap batolit yang cekung dinamakan roofpendant.

 

Aktivitas Magma dan Plate Tectonic

 

Asal magma merupakan topik yang sangat kontroversial dalam geologi. Pertanyaan-pertanyaan yang selalu muncul adalah bagaimana magma yang mempunyai komposisi berbeda terbentuk ? Mengapa gunung api yang berada di dasar samudera mengeluarkan lava basaltik, sedang yang berhubungan dengan palung laut menghasilkan lava andesitik ? Masih banyak lagi pertanyaan yang berkaitan dengan aktivitas magma terutama yang muncul ke permukaan. Untuk menjawab semua pertanyaan tersebut akan dibahas pertama kali asal-usul dari magma.

Asal Usul Magma

Seperti yang telah diketahui bahwa magma terbentuk apabila batuan dipanaskan hingga mencapai titik leburnya. Pada kondisi permukaan, batuan dengan komposisi granitik mulai melebur pada temperatur sekitar 750oC, sedangkan batuan basaltik mencapai temperatur 1000oC. Karena batuan mempunyai komposisi mineral yang sangat bervariasi, maka batuan akan melembur dengan sempurna dengan perbedaan temperatur sampai beberapa ratus derajat dari pertama kali batuan mulai melebur. Cairan yang pertama terbentuk pada waktu batuan mengalami pemanasan yang tinggi adalah mineral yang mempunyai titik lebur terendah. Bila pemanasan berlangsung terus, maka proses peleburan akan berlangsung terus mengikuti masing-masing titik lebur mineral yang menyusun batuan tersebut, sampai komposisi cairan mendekati komposisi batuan asalnya. Tetapi kadang-kadang proses peleburan ini tidak berlangsung sempurna. Proses peleburan yang bertahap ini disebut partial melting. Hasil yang signifikan dari proses partial melting adalah dihasilkannya cairan magma dengan kandungan silika yang lebih tinggi daripada batuan asalnya.

Darimana sumber panas yang melebur batuan ? Salah satu sumber panas yang berasal dari peluruhan mineral radioaktif yang terkonsentrasi pada mantel bumi bagian atas dan kerak bumi. Pekerja-pekerja tambang bawah tanah juga sudah lama mengetahui bahwa temperatur meningkat dengan bertambahnya kedalaman.

Jika temperatur merupakan satu-satunya yang menentukan apakah batuan akan meleleh atau tidak, maka bumi merupakan suatu bola pijar yang dilapisi oleh lapisan padat yang tipis. Tetapi ternyata tekanan juga bertambah besar sesuai dengan kedalaman. Karena batuan mengembang pada waktu dipanaskan, maka diperlukan tambahan panad untuk melelehkan batuan yang ditutupinya untuk mengatasi efek dari tekanan disekitarnya. Titik lebur batuan akan meningkat dengan meningkatnya tekanan.

Di alam, batuan yang dalam akan melebur oleh salah satu sebab dari dua faktor, yaitu pertama, batuan akan melebur karena temperatur naik melebihi titik lebur batuan tersebut. Kedua tanpa kenaikan temperatur, pengurangan tekanan disekitar batuan akan menyebabkan titik lebur batuan turun. Kedua proses tersebut merupakan faktor yang memegang peranan penting dalam proses pembentukan magma.

Penyebaran Aktivitas Magma

Sebagian besar dari lebih 600 gunung api aktif yang telah diketahui terletak disepanjang busur pertemuan lempeng konvergen. Beberapa gunung api aktif terletak disepanjang pemekaran samudera. Ada tiga jalur gunung api aktif yang berhubungan dengan aktivitas tektonik global, yaitu disepanjang pematang oceanic, palung oceanic dan pada kerak oceanicnya sendiri.

Volkanisme pada sperading center. Batuan voklanik sebagian besar terbentuk disepanjang pematang benua dan pemekaran benua sangat aktif. Karena adanya pemisahan kerak samudera, maka tekanan pada mantel bagian atas berkurang. Berkurangnya tekanan ini menyebabkan turunnya titik lebur batuan. Partial melting batuan ini menghasilkan magma basaltik yang mengalir keluar melalui rekahan tadi.

Volkanisme pada zona subduksi. Aktivitas volkanisme pada daerah ini menghasilkan batuan yang berkomposisi andesitik sampai granitik, dan terbentuk disepanjang tepi kerak samudera. Sebagian besar volkanisme yang menghasilkan magma andesitik dijumpai di daratan atau pulau-pulau dekat dengan jalur palung laut. Jalur gunung api Meriterane dan Pasifik merupakan jalur gunung api yang dihasilkan pada zona subduksi.

Volkanisme pada kerak bumi. Proses aktivitas volkanik pada kerak yang tegar biasanya sangat sulit terjadi. Aktivitas volkanisme ini dapat menghasilkan lava basaltik, maupun lava granitik. Lava basaltik dapat terbentuk baik pada kerak benua maupun oseanik. Lava basaltik kemungkinan berasal dari partial melting batuan mantel bagian atas.

Lava granitik dan debu volkanik dengan komposisi granitik umumnya terbentuk pada daratan tepi benua. Lava jenis ini kemungkinan berasal dari pelelehan kerak benua.

TATA CARA EKSPLORASI

Pada dasarnya, kegiatan penyelidikan cebakan mineral dilakukan secara bertahap. Tahapan kegiatan ini dilakukan terutama dikaitkan dengan sasaran yang akan dicapai, seperti besarnya anggaran awal yang cukup besar, dan lain-lain. Secara umum tahapan tersebut dituangkan dalam tatacara eksplorasi dan tahapan eksplorasi.

Kegiatan sebelum pekerjaan lapangan
Kegiatan sebelum pekerjaan lapangan ini bertujuan untuk mengetahui gambaran mengenai prospek cebakan mineral. Kegiatan ini meliputi studi literatur dan penginderaan jarak jauh. Penyediaan peralatan antara lain peta topografi, peta geologi, alat pemboran inti, alat ukur topografi, palu dan kompas geologi, loupe, magnetic pen, GPS, pita ukur, kamera, alat gali, magnetometer, kappameter dan peralatan geofisika, Alat tulis, tas lapangan, dan kantong sample, cangkul, linggis, balincong, parang serta alat pendukung lainnya.

Kegiatan Pekerjaan Lapangan

Kegiatan pekerjaan lapangan yang dilakukan adalah penyelidikan geologi meliputi pemetaan; pembuatan paritan dan sumur uji, pengukuran topografi, survey geofisika dan pemboran inti.
Kegiatan setelah pekerjaan lapangan

Kegiatan setelah pekerjaan lapangan yang dilakukan antara lain

* Analisis Laboratorium (meliputi analisis kimia dan fisika)

* Pengolahan Data

* Penentuan Sumber Daya dan Cadangan

* Pembuatan laporaN

Rangkaian eksplorasi dan pelaporan

Dalam melakukan eksplorasi sumberdaya alam (logam, nonlogam dan bahan galian industri), terdapat beberapa rangkaian kegiatan eksplorasi yang dapat digunakan untuk mendapatkan data pendukung sebagai input guna mendapatkan hasil dari daerah prospek dan cadangan.

Adapun rangkaian kegiatan eksplorasi meliputi pemetaan geologi, pengukuran topografi, dan pengukuran geofisika (geomagnet dan geolistrik dipole-dipole).

1. Pemetaan Geologi

* Landsat, analisa foto udara, citra landsat, berguna untuk melihat kemungkinan-kemungkinaterdapatnya aspek mineralisasi;

* Mapping, pemetaan geologi permukaan (pemetaan tinjau, semi detail, detail, pengukuran penampang stratigrafi). Daerah yang memiliki fitur sama dengan daerah yang telah ditambang akan memberikan kandungan sumberdaya yang hampir sama;

* sumur uji (Testpit) dan paritan, berguna untuk mendapatkan data-data atau melihat ekstensi litologi batuan secara vertikal.

2. Pengukuran Topografi

Metoda yang digunakan pada pengukuran topografi dipergunakan yaitu poligon tertutup. Peralatan yang digunakan adalah Theodolite (T-0) yang banyak dipergunakan untuk pengukuran di lapangan baik untuk perencanaan bangunan, irigasi, jalan raya, transmigrasi, bendungan, lapangan terbang dan lainnya. Poligon tertutup menggunakan satu titik ikat yang mana merupakan titik pertama juga merupakan titik terakhir dengan membuat titik ikat bantu yang berjarak 50 meter antar titik ikat yang satu dengan yang lainnya baik ke arah depan/belakang dengan spasi 20 meter ke arah samping kiri/kanan dengan tujuan untuk membuat peta grid topografi sehingga mempermudah untuk menentukan lokasi titik test pit, pengambilan conto, dan pengukuran geofisika.

3. Pengukuran Geofisika

Pengukuran geofisika merupakan kegiatan yang dilakukan setelah kegiatan pengukuran topografi dan pemetaan geologi. Metoda pengukuran geofisika yang dilakukan terdiri dari dua metoda yaitu geomagnet dan geolistrik.

Pengukuran geofisika dimaksudkan untuk mendapatkan data dan menentukan model geologi bawah permukaan yang ditampilkan dalam bentuk peta anomali geomagnet, peta anomali geolistrik, penampang geomagnet, dan penampang geolistrik.

a. Geomagnet

Metoda ini didasarkan pada perbedaan tingkat magnetisasi suatu batuan yang diinduksi oleh medan magnet bumi. Hal ini terjadi sebagai akibat adanya perbedaan sifat kemagnetan suatu material. Kemampuan untuk termagnetisasi tergantung dari susceptibilitas magnetik masing-masing batuan. Harga Susceptibilitas ini sangat penting didalam pencarian benda anomali, karena sifatnya yang sangat khas untuk setiap jenis mineral atau mineral logam. Harganya akan semakin besar bila jumlah kandungan mineral-mineral magnetik pada batuan semakin banyak.

Pengukuran magnetik dilakukan pada lintasan ukur yang tersedia dengan interval antar titik ukur 10 m dan jarak antar lintasan 40 m. Batuan dengan kandungan mineral-mineral tertentu dapat dikenal dengan baik dalam eksplorasi geomagnet, yang dimunculkan sebagai anomali. Anomali yang diperoleh merupakan hasil distorsi pada medan magnetik yang diakibatkan oleh material magnetik dari kerak bumi atau mungkin juga dari bagian atas mantel.

b. Geolistrik (Metoda Resistivity Dipole-Dipole)

Dalam pengukuran geolistrik dilakukan pengukuran di sepanjang lintasan ukur yang telah dibuat sebelumnya oleh tim topografi. Jarak antar titik ukur yaitu 10 m, sedangkan jarak antar lintasan adalah 50 m.

Pengukuran geolistrik bertujuan untuk mengetahui variasi harga tahanan jenis semu batuan bawah permukaan yang mencerminkan adanya perbedaan jenis lapisan batuan.

Bila arus listrik diinjeksikan ke dalam bumi melalui dua buah elektroda arus, kemudian diukur peda potensial yang ditimbulkan oleh adanya injeksi arus tersebut pada dua buah elektroda potensial, maka akan diperoleh harga tahanan jenis semu berdasarkan susunan elektroda dipole-dipole.

Nilai resistivitas yang dihitung bukanlah nilai resistivitas bawah permukaan yang sebenarnya, namun merupakan nilai semu yang merupakan resistivitas dari bumi yang dianggap homogen yang memberikan nilai resistansi yang sama untuk susunan elektroda yang sama. Hubungan antara resistivitas semu dan resistivitas sebenarnya sangat komplek (Loke, 2000), sehingga untuk menentukan nilai resistivitas bawah permukaan yang sebenarnya diperlukan perhitungan secara inversi dengan menggunakan bantuan komputer.

Harga tahanan jenis semu yang terukur dipengaruhi oleh adanya perbedaan harga tahanan jenis masing-masing lapisan batuan bawah permukaan.

Untuk mengukur variasi harga resistivitas semu (tahanan jenis semu) perlapisan batuan di bawah permukaan bumi dengan menggunakan metoda dipole-dipole, maka dilakukan penempatan sepasang elektroda arus ( A dan B ) dan sepasang elektroda potensial ( M dan N) di permukaan bumi pada satu garis lurus, dimana untuk elektroda-elektroda arus A dan B diletakkan berdekatan demikian juga elektroda-elektroda potensia M dan N.

Pelaporan

Hasil dari penyelidikan semua tahapan eksplorasi dituangkan dalam sebuah laporan akhir penyelidikan. Pembuatan laporan ini merupakan kegiatan terakhir seluruh pekerjaan eksplorasi yang berisi uraian teknis dan non-teknis. Laporan terdiri dari bab–bab yang berisi Pendahuluan, Kegiatan penyelidikan, Hasil Penyelidikan dan Kesimpulan. Laporan dilengkapi dengan sari, daftar isi, daftar gambar, daftar foto, daftar tabel dan lampiran, serta daftar pustaka.